CN / EN
banner图
Master The Core Technology Control The Use Of Light

Industry News

Why does traditional manufacturing need artificial intelligence?

Date:2018-10-19 Source:Samsun Technology
        随着计算机处理速度大幅提升、存储成本下降、以及云计算、物联网等技术的发展,让人工智能的应用成本大幅降低。消费者对个性化和产品品质升级的需求也不断发展,大大增加了制造业的复杂性,包括生产的组织形式、质量检测环节、仓储物流等环节。系统越来越复杂,人的学习曲线就会越缓慢,人应对复杂系统的能力就会成为制约技术进步和应用的瓶颈。
        如何利用人工智能技术代替人脑,甚至使其超越人脑来实现制造业效率的提升?
        在传统工业界大都以人的决策和反馈为核心,这就会导致系统中有很大一部分的价值并没有被释放出来。而人工智能为制造业带来的变革,就是摆脱人类认知和知识边界的限制,为决策支持和协同优化提供可量化依据。
        本文主要介绍人工智能在生产不同环节,包括产线设备、质量检测、仓储物流、整体运维四个方面的应用。
Why does traditional manufacturing need artificial intelligence?_samsuncn.com
        人工智能在工厂运维的应用:
        比如一条生产线突然发出故障报警,机器能够自己进行诊断,找到哪里产生了问题,原因是什么。并且,还能根据历史维护的记录或者维护标准,告诉我们如何解决故障,甚至让机器自己解决问题、自我恢复。
        人工智能在预测性维护的应用:
        如果工业生产线或设备如果突然出现问题,那造成的损失是非常巨大的。利用大数据建模和神经网络等算法,可以让机器在出现问题之前就感知到或者分析出可能出现的问题。比如,工厂中的数控机床在运行一段时间后刀具就需要更换,通过分析历史的运营数据,机器可以提前知道刀具会损坏的时间,从而提前准备好更换的配件,并安排在最近的一次维护时更换刀具。
        产线设备参数优化
        生产产线工位少则几十个,多则数百个,涉及的产线设备、生产物料、工人都非常多。通过基于生产线的大量数据,基于大数据分析和智能算法可以优化生产工艺、提升产品品质。现在有很多工厂传统上都是用人工在做质量检测的工作,在生产流水线上的质检员,他们需要每天花10个小时以上的时间去判断质量。很多工厂这个工作岗位两三个月就要轮一次岗,因为肉眼确实受不了。
        为什么之前没用技术的手段帮助解决质检的问题呢?主要原因是传统视觉设备误判率比较高。大概是有百分之二十,甚至三十的误判率。人工智能最重要的一个能力,它具备学习能力。比如说,同样一个划痕,它会和传统系统一样,第一次都犯错误。但是人工智能第二次、第三次,它不会犯一样的错误,它具备一个学习能力。通过利用深度学习,神经网络,就可以让电脑快速学习做自动检测的工作。
        仓储物流的包括环节很多,从入库分拣、库位管理、上下架、出库分拣到物料运输,中间涉及分拣机器人、上下料机器人、立库、AGV小车、叉车等。
        通过计算机视觉用于分拣机器人的感知和地图定位,利用机器学习和深度学习,实现分检机器人的路径规划和避障。通过数学规划等运筹优化算法和遗传算法,实现仓库上下架策略管理。
        通过多智能体算法 蚁群算法用于多个分拣机器人的协调行动。基于人工智能技术实现货架、商品、机器人的整体协调,能够更快速的实现产品出入库和高效的仓库货架规划。


Returns List