CN / EN
banner图
Master The Core Technology Control The Use Of Light

Technical Articles

机器视觉系统集成技术的三大概念

Date:2017-11-29 Source:三姆森科技
机器视觉(MachineVision)作为光电技术应用的一个特定领域,目前已经发展成为一个前景光明、活力无限的行业,年平均增长速度超过2O%。机器视觉广泛应用于微电子、电子产品、汽车、医疗、印刷、包装、科研、军事等众多行业。涉及技术一致,应用差异明显,是各种机器视觉应用系统的共同特点。
中国经济经过数十年的高速发展,在很多领域完成了从无到有、从不能到可以的跃变,现在已经到了提高生产效率和产品质量、残酷竞争的阶段,很多原来使用的人工工序正逐渐被机器所取代,从而对机器视觉系统产生了越来越多的需求。而机器视觉技术本来就是为了解决生产中的各种问题发展起来的。在人类的生产活动中,人的眼睛担负着很多重要的任务,例如放置和固定工件、观察和估计位置、检测外观尺寸、确定产品的一致性、检验产品质量等。这些工作正在越来越多地被机器视觉系统取代,一方面是随着对生产速度和产品质量的要求越来越高,对检测速度和精度的要求超过了肉眼的能力;另一方面是因为成像技术、计算机技术或图像处理技术的发展,机器视觉系统能够完成的任务越来越复杂,成本也越来越低。然而,机器视觉技术作为一门新兴技术,引人中国时间并不长,真正有经验的系统集成人员也不多,而机器视觉系统涉及到照明、成像、电子、自动控制、计算机软件硬件、机械设计、传感器、光学等各方面,把这些不同的技术集成到1个系统内,并使其相互完美配合工作,本身就是艰巨的任务。本文将介绍需求分析、资源配置、系统集成等几个方面的内容。
机器视觉系统集成技术的三大概念_samsuncn.com

A、需求分析
准确地描述机器视觉系统需要完成的功能和工作环境,对于整个机器视觉系统的成功集成是至关重要的。对于需求的描述,实际定义了视觉系统工作的场景,而围绕这个场景设计1个系统来获取合适的图像,并提取有用的信息或控制生产过程就是我们工作的目标。
机器视觉系统集成技术的三大概念
B、资源配置
机器视觉系统集成时,涉及到多门技术,最基本的系统也需要照明、成像、图像数字化、图像处理算法、计算机软件硬件等,稍微复杂一点的系统还会用到机械设计、传感器、电子线路、PLC、运动控制、数据库、SPC等等。显而易见,要把这么多不同方面的技术和知识组合到1个系统里,使其相互完美配合并稳定地工作,对系统集成人员提出了很高的要求,需要根据具体的需求来确定所需要配置的资源和对策。
B.1机械设计
由于需求不同,对机械部分的要求差别很大,如果是全自动的机器视觉系统,机械部分一般需要完成的功能有理料、输送、定位、剔除、下料等功能,而有的机器视觉系统则只需要适当的固定支架来固定相机、镜头和计算机即可,差别很大。
B.2照明光源
这个看似简单的照明系统是机器视觉系统最为关键的部分,直接关系到系统的成败,其重要性无论如何强调都是不过分的。好的设计能够使我们得到1幅好的图像,从而改善整个系统的分辨率,简化软件的运算,而不合适的照明,则会引起很多问题。例如花点和过度曝光会隐藏很多重要的信息;阴影则会引起边缘的误检;而信噪比的降低以及不均匀的照明会导致图像处理阈值选择的困难。1幅好的图像需要满足以下条件:
1、充分利用视场使被检测物体特征充满视场,从而可以最大限度地利用系统的分辨率;
2、对比度合适灰度级的最大值接近255,而最小值接近0;
3、焦距准确图像没有因为景深或运动而不清晰;
4、照明均匀,避免反光;
5、图像畸变小;
6、感兴趣的特征容易被检测识别,其他特征不显示或得到抑制。如果选择的光源,能使图像达到这些基本的要求,就完成了机器视觉系统集成的第1步。
B.3成像系统
从系统集成的角度,简单列举选择这些硬件的原则。
由于相机镜头和板卡经过多年的发展,目前已经相当成熟,而且在国内市场上,选择的余地也不大,一般是本着经济的原则,够用就好。
B.4计算机系统
机器视觉系统的最佳配置,是使用工控机还是使用嵌入式系统?在这个问题上,见仁见智,各有优缺点,主要还是看使用的场合和系统的需求。
B.5图像处理
图像处理作为机器视觉系统必不可少的部分,显得如此重要,以至于很多情况下,初学乍到的人会以为图像处理就是机器视觉。其实,我们所说的图像处理实际包含了图像增强和图像分析2个部分。图像增强是指经过某种处理,使图像改变,实现对比度提高、清晰度增加、特征突出等目的;而图像分析是指经过某种运算,来提取某种有用的信息,如有无、好坏、位置等,以便用来进行判断或控制。例如,如何使模糊的图像恢复到清晰,是典型的图像增强处理,只要得到清晰的图像就达到了目的;在繁忙的机场抓拍过往旅客的面孔,找到可疑恐怖分子,则是典型的图像分析过程。经过多年的发展,图像增强算法已经基本成熟,例如提高对比度的灰度拉伸、假彩色、边缘提取、滤波、傅立叶变换、小波变换等。在机器视觉系统集成时,这些一般都是在图像分析前作为图像预处理进行的,而图像分析算法才是机器视觉真正需要解决的问题。
C、系统集成
明确了我们的需求,估计了我们需要配置的资源,理解了各子系统需要完成的工作,就把这些知识综合考虑组成了1个整机系统。


Returns List